Abstract
Nanoclusters with extra stability at certain cluster sizes are known as magic clusters with exotic properties. The classic Wulff construction principle, which stipulates that the preferred structure of a cluster should minimize its total surface energy, is often invoked in determining the cluster magicity, resulting in close-shelled Mackay icosahedronal clusters with odd-numbered magic sizes of 13, 55, 147, etc. Here we use transition metal clusters around size 55 as prototypical examples to demonstrate that, in the nanometer regime, the classic Wulff construction principle needs to be generalized to primarily emphasize the edge atom effect instead of the surface energy. Specifically, our detailed calculations show that nanoclusters with much shorter total edge lengths but substantially enlarged total surface areas are energetically much more stable. As a consequence, a large majority of the nanoclusters within the 3d-, 4d-, and 5d-transition metal series are found to be fcc or hcp crystal fragments with much lower edge energies, and the widely perceived magic size of 55 is shifted to its nearby even numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.