Abstract

Fission yeast was treated with the anti-microtubule agent, thiabendazole. Cytoplasmic microtubules broke down with a half-time of less than 10 minutes followed closely by the unstacking of Golgi cisternae. The final product appeared to be single Golgi cisternae. No other organelle seemed to be affected by this treatment, which was completely reversible. The nda3 mutant strain has an altered beta-tubulin and its cytoplasmic microtubules are resistant to thiabendazole. The Golgi in this cold-sensitive mutant was unaffected by treatment at the permissive temperature but unstacked at the non-permissive temperature even in the absence of thiabendazole. Taken together these data show that disruption of the microtubular network can cause dissociation of Golgi cisternae. Newly synthesised acid phosphatase was transported and secreted to the same extent and with the same kinetics whether or not the Golgi was unstacked. The possible role of microtubules in Golgi stacking and the lack of effect on secretion are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.