Abstract

Zone plates are diffractive focusing optics capable of nanometer focusing but limited focusing efficiency at hard x-ray energy. A smaller focus spot is possible by reducing the outer zone width (OZW) while increasing the zone height will generally increase focusing efficiency. The combination of thick zones with small outer zone width, or high aspect ratio, for better performing zone plates is not feasible with state-of-the-art fabrication methods and requires other methods to achieve the aspect ratio desired. Near-field stacking involves two zone plates with the same dimensions and aligning them within the depth of focus in the beam direction and one third of the OZW in the transverse direction. Due to the depth of focus limitation, stacking more than 2 zone plates is extremely difficult, so a new method was proposed and developed to stack zone plates in the intermediate field. Multiple stacking apparatuses were assembled and tested. We will report on results from stacking 80-nm OZW zone plates from a near-field stacking experiment at 10 keV X-ray energy and intermediate field stacking 6 zone plates at 27 keV X-ray energy. We will also present findings on how to combine the stacking techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call