Abstract
Improving the accuracy of electric load forecasting is critical for grid stability, industrial production, and residents' daily lives. Traditional short-term load forecasting methods often struggle to fully capture the long-term dependencies and deep-seated features in unknown datasets, thus limiting their generalization ability. In this paper, we propose an algorithm for short-term power load forecasting based on the stacking integration algorithm of Convolutional Neural Network-Bidirectional Long Short-Term Neural Network-Attention Mechanism (CNN-BiLSTM-Attention) with Extreme Gradient Tree (XGBoost). First, an adaptive hierarchical clustering algorithm (AHC) selects a dataset with similar day characteristics. Then, combined with influencing factors, the Stacking integrated algorithm based on CNN-BiLSTM-Attention and XGBoost is employed for forecasting short-term load data. Finally, the integrated algorithm model was applied to the multi-feature load dataset in the Quanzhou area from 2016 to 2018. Comparative analysis showed that MAPE could be reduced by 5.88–69.40 % in the four selected typical days compared to the comparative algorithm, significantly improving load forecasting accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.