Abstract
The stacking fault energy (SFE) values of several typical face-centered-cubic (fcc) high-entropy alloys (HEAs) were experimentally measured by weak-beam dark-field transmission electron microscopy. It was found that the SFE of the Fe-Co-Ni-Cr-Mn HEA system strongly depends on the SFE of the individual constituents. Specifically, the SFE of this HEA system is closely associated with the Ni concentration in the alloys. Additionally, the lower SFE tends to promote formation of more deformation twins with a smaller thickness under loading, leading to better mechanical properties, especially at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.