Abstract

A combined experimental and first-principles study was performed on a new zirconium alloy. Experimental results showed that alloy elements, such as Cu, Nb, etc., mainly dissolve into the matrix of zirconium alloy where a larger number of slip traces are detected except for dislocation after deformation. First-principles calculation showed that Nb significantly reduces unstable stacking fault energy (γus), leading to the increment of {101-0}〈112-0〉 slip systems activity, and the stable and unstable stacking fault energies are both dramatically decreased with the addition of Cu, which is beneficial to the activation of the {0001} <101-0> and {101-1} <112-3> slip systems. It is suggested that basal or pyramidal plane becoming the second primary slip system givesriseto excellent forming properties, especially ductility. A new zirconium alloy containing Nb, Fe, and Cu elements was tested through uniaxial tension tests with digital image correlation (DIC) equipment. Both experimental and theoretical results showed that adding Nb, Fe, and Cu can enhance the ductility of zirconium alloys. Electronic properties of various stacking faults were also analyzed to explore the origin of excellent forming properties. Added element and its matching amount can be considered from the aspects of electronegativity and concentration effect for the preparation of zirconium alloys with excellent forming properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.