Abstract

ABSTRACTFirst-principles calculations of the stacking fault energies of Ni3Al, and the linear elastic constants of Ni3Al and Pt3Al are presented. The anomalous (positive) temperature dependence of flow stress in Ni3Al and its absence in Pt3Al are fully rationalized in terms of the present results and cross-slip pinning mechanism. It is found that the elastic shear anisotropy factor plays an equally (or even more) important role than the anisotropy of antiphase-phase boundary energy in determining the plastic flow behavior of L12-ordered alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.