Abstract
Nanostructured graphene electrodes generally have a low density, which can limit the volumetric performance for energy storage devices. The liquid-phase mild reduction process of graphene oxide sheets is combined with the continuous aerosol densification process to produce high-density graphene agglomerates in the form of microspheres. The produced graphene assembly shows the cabbage-like morphology with a high density of 0.75 g cm-3 . In spite of such high density, the cabbage-like graphene microspheres have narrow-ranged mesopores and a high surface area. The cabbage-like graphene microsphere exhibits both high gravimetric and volumetric energy densities due to the optimized microstructure, which shows a high gravimetric capacitance of 177 F g-1 and volumetric capacitance of 117 F cm-3 in supercapacitors. As a cathode for lithium-ion capacitors, the cabbage-like graphene delivers a reversible capacity of ≈176 mAh g-1 . The stacking-control approach provides a new pathway to control the microstructure of the graphene assembly and corresponding charge storage characteristics for energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.