Abstract
Protein nitrotyrosine is an essential post-translational modification that results from the nitration of tyrosine amino acid residues. This modification is known to be associated with the regulation and characterization of several biological functions and diseases. Therefore, accurate identification of nitrotyrosine sites plays a significant role in the elucidating progress of associated biological signs. In this regard, we reported an accurate computational tool known as iNTyro-Stack for the identification of protein nitrotyrosine sites. iNTyro-Stack is a machine-learning model based on a stacking algorithm. The base classifiers in stacking are selected based on the highest performance. The feature map employed is a linear combination of the amino composition encoding schemes, including the composition of k-spaced amino acid pairs and tri-peptide composition. The recursive feature elimination technique is used for significant feature selection. The performance of the proposed method is evaluated using k-fold cross-validation and independent testing approaches. iNTyro-Stack achieved an accuracy of 86.3% and a Matthews correlation coefficient (MCC) of 72.6% in cross-validation. Its generalization capability was further validated on an imbalanced independent test set, where it attained an accuracy of 69.32%. iNTyro-Stack outperforms existing state-of-the-art methods across both evaluation techniques. The github repository is create to reproduce the method and results of iNTyro-Stack, accessible on: https://github.com/waleed551/iNTyro-Stack/
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.