Abstract

In this paper we propose a stacking approach for Convolutional Neural Network (CNN) transfer learning ensemble for remote sensing imagery, in particular for the task of scene classification. We propose to use a combination of features produced by an ensemble of CNNs as one feature vector for classification. At the same time the original data set can be processed with different up-sampling and image enhancement methods and then used to obtain more features from pretrained networks. We investigate both fine-tuning and non fine-tuning approaches for transfer learning. We have selected Brazilian Coffee Scenes data set as a benchmark to measure the classification accuracy. Proposed method in case of a non fine-tuned model shows 89.18% classification accuracy. For a fine-tuned model the best classification rate is 96.11%. We analyzed how networks that have appeared recently (VGG-19 and SqueezeNet), can be applied to the task of transfer learning for remote sensing. Also we describe a method of decreasing processing time and memory consumption while preserving classification accuracy by using feature selection based on feature importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.