Abstract

A simple, sensitive, and useful concentration method for lovastatin (Lvt) in urine has been developed based on the transient moving chemical reaction boundary method (tMCRBM) in capillary electrophoresis. The MCRB is formed with acidic sample buffer (Gly-HCl) and alkaline running buffer (Gly-NaOH). The following optimal conditions were determined for stacking and separation: electrophoretic buffer of 100 mM Gly- NaOH (pH 11.52), sample buffer of 20 mM Gly-HCl (pH 4.93), fused-silica capillary of 76 cm x 75-microm i.d (67 cm from detector), sample injection at 14 mbar for 3 min. A 21- to 26-fold increase in peak height was achieved for detection of Lvt in urine under the optimal conditions compared with normal capillary zone electrophoresis. By combining the sample pretreatment procedure with the stacking method, the sensitivity of Lvt in urine was increased by 105- to 130-fold. The limits of detection (LOD) and quantification (LOQ) for Lvt in urine were decreased to 8.8 ng/mL and 29.2 ng/mL, respectively. The intra-day and inter-day precision values (expressed as RSD) were 2.23-3.61% and 4.03-5.05%, respectively. The recoveries of the analyte at three concentration levels changed from 82.65 to 100.49%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.