Abstract

Parkinson’s disease (PSD) is a neurological disorder of the brain where nigrostriatal integrity functions lead to motor and non-motor-based symptoms. Doctors can assess the patient based on the patient’s history and symptoms; however, the symptoms are similar in various neurodegenerative diseases, such as progressive supranuclear palsy (PSP), multiple system atrophy—parkinsonian type (MSA), essential tremor, and Parkinson’s tremor. Thus, sometimes it is difficult to identify a patient’s disease based on his or her symptoms. To address the issue, we have used neuroimaging biomarkers to analyze dopamine deficiency in the brains of subjects. We generated the different patterns of dopamine levels inside the brain, which identified the severity of the disease and helped us to measure the disease progression of the patients. For the classification of the subjects, we used machine learning (ML) algorithms for a multivariate classification of the subjects using neuroimaging biomarkers data. In this paper, we propose a stacked machine learning (ML)-based classification model to identify the HC and PSD subjects. In this stacked model, meta learners can learn and combine the predictions from various ML algorithms, such as K-nearest neighbor (KNN), random forest algorithm (RFA), and Gaussian naive Bayes (GANB) to achieve a high performance model. The proposed model showed 92.5% accuracy, outperforming traditional schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.