Abstract
Carrier injection and subsequent radiative recombination in two vertically stacked (but electronically only weakly coupled) layers of InAs/GaAs self-assembled quantum dots (SADs) embedded in the intrinsic region of a double hetero p-i-n structure was investigated by electroluminescence (EL) spectroscopy in the temperature range from 20 to 300 K. In such structures the filling of the SADs by charge carriers strongly depends not only on the applied voltage, but also on the relative position of the SAD layers within the i-region and on the temperature. The experimental data provide evidence of the dominant role of hole dynamics in the recombination processes in the stacks of SADs. The difference of the electronic structure of the SADs in the top and bottom layers is reflected by independent contributions of the two quantum dot layers to the electroluminescence from the SADs. The possibility to tune the emission spectra by varying the thickness of the GaAs layer between neighbouring SAD layers and by using the indium flush technique is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.