Abstract

Furan tests provide a non-intrusive and cost-effective method of estimating the degradation of paper insulation, which is critical for ensuring the reliability of power grids. However, conducting routine furan tests can be expensive and challenging, highlighting the need for alternative methods, such as machine learning algorithms, to predict furan concentrations. To establish the generalizability and robustness of the furan prediction model, this study investigates two distinct datasets from different geographical locations, Utility A and Utility B. Three scenarios are proposed: in the first scenario, a round-robin cross-validation method was used, with 75% of the data for training and the remaining 25% for testing. The second scenario involved training the model entirely on Utility A and testing it on Utility B. In the third scenario, the datasets were merged, and round-robin cross-validation was applied, similar to the first scenario. The findings reveal the effectiveness of machine learning algorithms in predicting furan concentrations, and particularly the stacked generalized ensemble method, offering a non-intrusive and cost-effective alternative to traditional testing methods. The results could significantly impact the maintenance strategies of power and distribution transformers, particularly in regions where furan testing facilities are not readily available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call