Abstract

Skin irritation is an adverse effect associated with various substances, including chemicals, drugs, or natural products. Dipterocarpol, extracted from Dipterocarpus alatus, contains several skin benefits notably anticancer, wound healing, and antibacterial properties. However, the skin irritation of dipterocarpol remains unassessed. Quantitative structure-activity relationship (QSAR) is a recommended tool for toxicity assessment involving less time, money, and animal testing to access unavailable acute toxicity data. Therefore, our study aimed to develop a highly accurate machine learning-based QSAR model for predicting skin irritation. We utilized a stacked ensemble learning model with 1064 chemicals. We also adhered to the recommendations from the OECD for QSAR validation. Subsequently, we used the proposed model to explore the cytotoxicity of dipterocarpol on keratinocytes. Our findings indicate that the model displayed promising statistical quality in terms of accuracy, precision, and recall in both 10-fold cross-validation and test datasets. Moreover, the model predicted that dipterocarpol does not have skin irritation, which was confirmed by the cell-based assay. In conclusion, our proposed model can be applied for the risk assessment of skin irritation in untested compounds that fall within its applicability domain. The web application of this model is available at https://qsarlabs.com/#stackhacat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.