Abstract
One of the most common neurological conditions caused by gradual brain degeneration is Parkinson's disease (PD). Although this neurological condition has no known treatment, early detection and therapy can help patients improve their quality of life. An essential patient's health record is made of medical images used to control, manage, and treat diseases. However, in computer-based diagnostics, disease classification is a difficult task. To overcome this problem, this paper introduces a stacked denoising Autoencoder (SDA) for Parkinson's disease classification. The main aim of this paper is to derive an optimal feature selection design for an effective PD classification. Improved Pigeon-Inspired Optimization (IPIO) algorithm is introduced to enhance the performance of the classifier. Thus, the classification result improved by the optimal features and also increased the sensitivity, accuracy, and specificity in the medical image diagnosis. The proposed scheme is implemented in PYTHON and compared with traditional feature selection models and other classification approaches. The experimental outcomes show that the proposed method yields a superior classification of PD than the current state-of-the-art method
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.