Abstract

In quest of higher efficiency and power density, various studies have been carried out to boost the performance of conventional asymmetrical half bridge (AHB) topologies through either magnetics optimization or deployments of fully soft switching schemes. Although the reporting results from existing works are quite promising, none of them show significant breakthrough in power conversion density which is currently limited by existing technologies for high-voltage (above 500V) MOSFETs. This paper proposes a novel stacked multiphase asymmetrical half bridge (SMAHB) topology operating in a similar manner as conventional AHB converters, but enabling deployment of 250V MOSFETs for faster switching and material reduction in magnetics and EMI filters, which allows high efficient and compact implementation. The operation and performance of the proposed converter is confirmed via both simulated and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.