Abstract

What dynamics do simple recurrent networks (SRNs) develop to represent stack-like and queue-like memories? SRNs have been widely used as models in cognitive science. However, they are interesting in their own right as non-symbolic computing devices from the viewpoints of analogue computing and dynamical systems theory. In this paper, SRNs are trained on two prototypical formal languages with recursive structures that need stack-like or queue-like memories for processing, respectively. The evolved dynamics are analysed, then interpreted in terms of simple dynamical systems, and the different ease with which SRNs aquire them is related to the properties of these simple dynamical systems. Within the dynamical systems framework, it is concluded that the stack-like language is simpler than the queue-like language, without making use of arguments from symbolic computation theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.