Abstract

Glioblastoma Multiforme (GBM) is a highly malignant brain tumor with poor prognosis. Understanding the molecular mechanisms driving GBM tumorigenesis is crucial for developing effective therapeutic strategies. This study investigates the role of STAC1, a gene belonging to the SH3 and cysteine-rich domain family, in glioblastoma cell invasion and survival. Computational analyses of patient samples reveal that STAC1 expression is elevated in GBM tissues, and higher STAC1 expression is associated with lower overall survival rates. Consistently, we find that overexpression of STAC1 in glioblastoma cells enhances invasion, while knockdown of STAC1 reduces invasion and the expression of genes associated with epithelial-to-mesenchymal transition (EMT). STAC1 depletion also induces apoptosis in glioblastoma cells. Furthermore, we show that STAC1 regulates AKT and calcium channel signaling in glioblastoma cells. Collectively, our study provides valuable insights into the pathogenic roles of STAC1 in GBM and highlights its potential as a promising target for the treatment of high-grade glioblastoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.