Abstract
A 3 × 3 coupler multiphase demodulation scheme is proposed to eliminate the impact of working point drifting and the laser relative intensity noise (RIN) on a 3 × 3 coupler interferometric system. An ellipse-fitting algorithm (EFA) is applied to fit the two interference signals of the 3 × 3 coupler in order, then the ATAN algorithm is applied to obtain three noise-containing signals with specific trigonometric relationships. By averaging the three signals, the demodulated phase noise induced from RIN can be effectively eliminated. The experimental results show that compared with the asymmetric demodulation scheme without intensity noise control, the noise floor of the proposed scheme decreases from 4.5 to 1 µrad/√Hz at 1 kHz and 2.7 to 0.8 µrad/√Hz at 3 kHz. At high frequencies, the average noise floor level is reduced from 10 to 0.9 µrad/√Hz, a reduction of about 21 dB. Furthermore, the variation range of the average noise floor is reduced from 5.4 to 0.17 µrad /√Hz within 100 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.