Abstract

This work presents a methodology to generate dynamically stable whole-body motions for a humanoid robot, which are converted from human motion capture data. The methodology consists of the kinematic and dynamical mappings for human-likeness and stability, respectively. The kinematic mapping includes the scaling of human foot and Zero Moment Point (ZMP) trajectories considering the geometric differences between a humanoid robot and a human. It also provides the conversion of human upper body motions using the method in [1]. The dynamic mapping modifies the humanoid pelvis motion to ensure the movement stability of humanoid whole-body motions, which are converted from the kinematic mapping. In addition, we propose a simplified human model to obtain a human ZMP trajectory, which is used as a reference ZMP trajectory for the humanoid robot to imitate during the kinematic mapping. A human whole-body dancing motion is converted by the methodology and performed by a humanoid robot with online balancing controllers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call