Abstract

Protein export is central for the survival and virulence of intracellular P. falciparum blood stage parasites. To reach the host cell, exported proteins cross the parasite plasma membrane (PPM) and the parasite-enclosing parasitophorous vacuole membrane (PVM), a process that requires unfolding, suggestive of protein translocation. Components of a proposed translocon at the PVM termed PTEX are essential in this phase of export but translocation activity has not been shown for the complex and questions have been raised about its proposed membrane pore component EXP2 for which no functional data is available in P. falciparum. It is also unclear how PTEX mediates trafficking of both, soluble as well as transmembrane proteins. Taking advantage of conditionally foldable domains, we here dissected the translocation events in the parasite periphery, showing that two successive translocation steps are needed for the export of transmembrane proteins, one at the PPM and one at the PVM. Our data provide evidence that, depending on the length of the C-terminus of the exported substrate, these steps occur by transient interaction of the PPM and PVM translocon, similar to the situation for protein transport across the mitochondrial membranes. Remarkably, we obtained constructs of exported proteins that remained arrested in the process of being translocated across the PVM. This clogged the translocation pore, prevented the export of all types of exported proteins and, as a result, inhibited parasite growth. The substrates stuck in translocation were found in a complex with the proposed PTEX membrane pore component EXP2, suggesting a role of this protein in translocation. These data for the first time provide evidence for EXP2 to be part of a translocating entity, suggesting that PTEX has translocation activity and provide a mechanistic framework for the transport of soluble as well as transmembrane proteins from the parasite boundary into the host cell.

Highlights

  • Five species of Plasmodium parasites cause human malaria

  • P. falciparum parasites, the deadliest agent of human malaria, develop within erythrocytes where they are surrounded by a parasitophorous vacuolar membrane (PVM)

  • We dissected the sequence of translocation events at the parasite boundary using substrates that can be conditionally arrested at translocation steps

Read more

Summary

Introduction

Five species of Plasmodium parasites cause human malaria. The pathology of malaria is caused by the continuous propagation of the parasite within red blood cells (RBCs). In this phase P. falciparum parasites modify extensively the host RBC by exporting hundreds of different proteins into the infected cell. These modifications include host cell surface changes that cause the sequestration of infected RBCs (iRBCs) in the vasculature, a phenomenon considered to be a major contributor to parasite virulence [2]. Protein export is central for blood stage development and malaria pathology

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.