Abstract

Agrobacterium tumefaciens-mediated transformation of callus culture, combined with a visual selection of GFP-tagged fimbrin actin binding domain (FABD2) expression is described for parasitic species (Cuscuta europaea). The conditions for callus induction from 1 cm-long explants from the basal part of 7-day-old dodder seedlings were defined. We obtained light-green calli, which were transformed with A. tumefaciens bacterial strain GV3101 carrying plasmid pCB302 (35S::ABD2:gfp) with neomycin phosphotransferase (nptII) gene. The limitations of selection procedures based on antibiotics were avoided using green fluorescent protein (GFP) detection, as a visual selection marker subcellularly targeted to the actin cytoskeleton. Fluorescence microscopy analyses demonstrated a network of nucleus-associated actin arrays and dense cortical actin arrangements in stably transformed Cuscuta callus cells. RT-PCR analyses confirmed gfp expression in transformed calli 7, 14 and 21 days after transformation. Although the GFP fluorescence associated with the actin cytoskeleton has retained for at least six months without silencing, no shoot regeneration was observed. It can be concluded that, C. europaea callus cells are competent for transformation, but under given conditions, these cells failed to realize their morphogenic and regeneration potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call