Abstract

It is documented that alkaline phosphatase (AP) plays an important role in bone mineralization. Considering that TN-AP is expressed in periodontal ligament fibroblasts, renal epithelial cells, and vascular endothelial cells, and that TN-AP is both a calcium-/phosphate-binding protein and a phosphohydrolytic enzyme, we hypothesize that membrane-bound AP also plays an important role in the initiation of physiological and pathological mineralizations in tissues other than bone and cartilage. To test this hypothesis, nonosteoblast cell lines, including a fibroblast line, a renal epithelial line, and a capillary endothelial line, were stably transfected to express high levels of rat bone AP on their cell surfaces. These rat bone AP-expressing cells were then cultured on filter membranes in the presence or absence of beta-glycerol phosphate. von Kossa staining for calcium phosphate and transmission electron microscopy with electron diffraction analysis for minerals were employed to investigate the effect of membrane AP on extracellular calcium phosphate mineralization. Our results indicated that AP expression on these nonosteoblast-like cell surfaces have induced extracellular hydroxyapatite (HAP) mineralization. Our findings support the concept that membrane-bound AP contributes to extracellular apatitic mineralization by mechanisms that do not necessarily involve its hydrolase activity. They also suggest that AP might be important for the initiation of pathological mineralization in nonosteogenic tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.