Abstract

The obligate intracellular apicomplexan parasite Eimeria tenella, one of seven species of Eimeria that infect chickens, elicits protective cell-mediated immunity against challenge infection. For this reason, recombinant E. tenella parasites could be utilised as an effective vaccine vehicle for expressing foreign antigens and inducing immunity against heterologous intracellular microbes. A stable line of E. tenella expressing foreign genes is a prerequisite, and in this work an in vivo stable transfection system has been developed for this parasite using restriction enzyme-mediated integration (REMI). Two transgenic populations of E. tenella have been obtained that express YFP-YFP constitutively throughout the parasite life cycle. Southern blotting and plasmid rescue analyses show that the introduced exogenous DNA was integrated at random into the parasite genome. Although the life cycle of the transgenic populations was delayed by at least 12 h and the output of oocysts was reduced 4-fold relative to the parental BJ strain of E. tenella, the transgenic parasites were sufficiently immunogenic to protect chickens against challenge with either transgenic or parental parasites. These results are encouraging for the development of transgenic E. tenella as a vaccine vector and for more detailed investigation of the biology of the genus Eimeria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call