Abstract

We show that the quadratic interaction of fundamental and second harmonics in a bulk dispersive medium, combined with self-defocusing cubic nonlinearity, gives rise to completely localized spatiotemporal solitons (vortex tori) with vorticity s=1. There is no threshold necessary for the existence of these solitons. They are found to be stable if their energy exceeds a certain critical value, so that the stability domain occupies about 10% of the existence region of the solitons. On the contrary to spatial vortex solitons in the same model, the spatiotemporal ones with s=2 are never stable. These results might open the way for experimental observation of spinning three-dimensional solitons in optical media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.