Abstract

In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.

Highlights

  • Learning disability (LD), with a prevalence between 2.6 and 3.5%, (14% of all with mental health problems) in children between 5 and 16 years old (Emerson and Hatton, 2013), is a complex phenomenon that includes many facets

  • In this paper we report a method to achieve stable classifiers for qEEG parameters, with two main objectives, to improve a technique for the identification of stable classifiers, extending this to the prediction of disability severity and the identification using this technique of a minimal set of qEEG features to predict the degree of severity of LD-NOS

  • We emphasize that our method adheres to these procedures using the elastic-net technique, which includes a regularization parameter to shrink the number of variables which will participate in the model

Read more

Summary

Introduction

Learning disability (LD), with a prevalence between 2.6 and 3.5%, (14% of all with mental health problems) in children between 5 and 16 years old (Emerson and Hatton, 2013), is a complex phenomenon that includes many facets. Stability Based Biomarkers for LD-NOS Classification in standardized tests for reading, mathematics, and written expression–adjusted according to the age, schooling, and level of intelligence of the proband. Specific Learning Disorder are defined by problems in only one of these three areas: reading/language (Dyslexia), Mathematics (Dyscalculia), and Writing (Dysgraphia). There is another category, Not Otherwise Specified Learning Disability (LD-NOS) in which more than one area is affected (Diagnostic and Statistical Manual of Mental Disorders, version IV, DSM-IV-TR; American Psychiatric Association, 2000). Due to the heterogeneity within and across domains it is challenging to disentangle the different possible subgroups of LD-NOS

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.