Abstract

The inorganic-rich solid electrolyte interphase (SEI) has attracted wide attention due to its good compatibility with the lithium (Li) metal anode. Herein, a stable solvent-derived inorganic-rich SEI is constructed from a hydrofluoroether-diluted low-concentration electrolyte, which simultaneously possesses the merits of nonflammability and low cost (0.5 M LiPF6). The addition of hydrofluoroether enhances the coordination strength between Li+ and solvents, altering the decomposition path of solvents to yield more Li2O. The abundant Li2O crystals endow the SEI with improved passivating ability and ion conductivity. The 30 μm Li|NCM523 (3.8 mAh cm-2) batteries with solvent-derived Li2O-rich SEI deliver 96.1% capacity retention after 200 cycles. Notably, a 1.1 Ah Li|NCA pouch cell delivers an energy density of 374 Wh kg-1 and achieves 45 stable cycles. This study points out that tuning the decomposition of solvents provides a new approach to construct stable inorganic-rich SEI for practical Li-metal batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.