Abstract
Lithium–oxygen (Li–O2) batteries exhibit the highest theoretical specific energy density among candidates for next-generation energy storage systems, but the instabilities of Li metal anode (LMA), air electrode, and electrolyte largely limit the practical applications of these batteries. Herein, we report an effective method to protect the LMA against side reactions between the LMA and the crossover contaminants such as highly reactive oxygen moieties. A solid electrolyte interphase (SEI) layer rich in inorganic components is formed on the LMA coated with poly(ethylene oxide) thin film through an in situ electrochemical precharging step under oxygen atmosphere. This uniformly distributed SEI layer interacts with the flexible polymer matrix and forms a submicrometer-sized gel-like polymer layer. This polymer-supported SEI layer leads to much longer cycle life (130 vs 65 cycles) as compared to that of pristine cells under the same testing conditions. It is also very effective to stabilize the LMA/electrolyte interphase with a redox mediator.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.