Abstract

Finite-difference methods of second order at the boundary points are presented for problems with one-dimensional second-order hyperbolic and parabolic equations with mixed boundary conditions. These methods do not require information at points outside the region of consideration. The linear stability of the algorithms developed is investigated. Numerical experiments are given for illustrating the accuracy and stability of the methods. Though the focus is on homogeneous boundary conditions, finite-difference methods with non-homogeneous mixed boundary conditions are also developed. To show the potential of the methods developed, in terms of CPU time, a comparison is made with the Crank–Nicolson method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.