Abstract

Non-linear diffusion equations with numerical stability problems are common in many branches of science. An example is the k-diffusion parametrization for vertical turbulent mixing in atmospheric models that creates a system of non-linear diffusion equations with stability problems. In this paper a new algorithm to solve the one-dimensional diffusion equation is presented. This method, which is stable by design, is quite general and can be used in other partial differential equations. Results with the new scheme compare well with analytical solutions, and a study with a system of two non-linear diffusion equations shows that the new method is more stable than more traditional schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.