Abstract
SUMMARYOptimal grasping points for a robotic gripper were derived, based on object and hand geometry, using deep neural networks (DNNs). The optimal grasping cost functions were derived using probability density functions for each local cost function of the normal distribution. Using the DNN, the optimum height and width were set for the robot hand to grasp objects, whose geometric and mass centre points were also considered in obtaining the optimum grasping positions for the robot fingers and the object. The proposed algorithm was tested on 10 differently shaped objects and showed improved grip performance compared to conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.