Abstract
Heterokaryons are the product of cell fusion without subsequent nuclear or chromosome loss. Decades of research using Sendai-virus or polyethylene glycol (PEG)-mediated fusion in tissue culture showed that the terminally differentiated state of a cell could be altered. But whether stable non-dividing heterokaryons could occur in animals has remained unclear. Here, we show that green fluorescent protein (GFP)-positive bone-marrow-derived cells (BMDCs) contribute to adult mouse Purkinje neurons through cell fusion. The formation of heterokaryons increases in a linear manner over 1.5 years and seems to be stable. The dominant Purkinje neurons caused the BMDC nuclei within the resulting heterokaryons to enlarge, exhibit dispersed chromatin and activate a Purkinje neuron-specific transgene, L7-GFP. The observed reprogrammed heterokaryons that form in brain may provide insights into gene regulation associated with cell-fate plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nature Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.