Abstract
We present a new method for the stable reconstruction of a class of binary images from a small number of measurements. The images we consider are characteristic functions of algebraic domains, that is, domains defined as zero loci of bivariate polynomials, and we assume to know only a finite set of uniform samples for each image. The solution to such a problem can be set up in terms of linear equations associated to a set of image moments. However, the sensitivity of the moments to noise makes the numerical solution highly unstable. To derive a robust image recovery algorithm, we represent algebraic polynomials and the corresponding image moments in terms of bivariate Bernstein polynomials and apply polynomial-generating, refinable sampling kernels. This approach is robust to noise, computationally fast and simple to implement. We illustrate the performance of our reconstruction algorithm from noisy samples through extensive numerical experiments. Our code is released open source and freely available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.