Abstract
Let E be a separable infinite-dimensional Hilbert space, and let H(D; (E)) denote the algebra of all functions f:D (E) that are holomorphic. If is a subalgebra of H(D; (E)) , then using an algebraic result of Corach and Larotonda, we derive that under some conditions, the Bass stable rank of is infinite. In particular, we deduce that the Bass (and hence topological stable ranks) of the Hardy algebra H (D; (E)), the disk algebra A(D; (E)) and the Wiener algebra W+(D; (E)) are all infinite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.