Abstract

The Alzheimer's disease (AD)-affected brain purges K with concurrently increasing serum K, suggesting brain-blood K transferal. Here, natural stable K isotope ratios-δ41K-of human serum samples were characterized in an AD biomarker pilot study (plus two paired Li-heparin and potassium ethylenediaminetetraacetic acid [K-EDTA] plasma samples). AD serum was found to have a significantly lower mean δ41K relative to controls. To mechanistically explore this change, novel ab initio calculations (density functional theory) of relative K isotope compositions between hydrated K+ and organically bound K were performed, identifying hydrated K+ as isotopically light (lower δ41K) compared to organically bound K. Taken together with literature, serum δ41K and density functional theory results are consistent with efflux of hydrated K+ from the brain to the bloodstream, manifesting a measurable decrease in serum δ41K. These data introduce serum δ41K for further investigation as a minimally invasive AD biomarker, with cost, scalability, and stability advantages over current techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.