Abstract

The photoluminescence stability of lanthanide complex in aqueous media is a prerequisite for diagnostics probes. The combination of building blocks working in concert to facilitate host–guest structures is now considered state of the art in surpassing this roadblock, yet there still remains a tremendous challenge. Here, a stable, highly-luminescent system was developed through trapping anionic complexes sensitized by tridentate pyridine-tetrazolate (pytz) ligands within the rigid framework of ZIF-8 (zeolitic imidazolate framework-8) particles (∼60 nm in size). The key to maintaining the stable luminescence of lanthanide complexes inside ZIF-8 frameworks is a stopcock design, i.e. stopper molecules (an imidazolium based ionic liquid) selectively plugged on the pore entrances located at the exterior surface of the ZIF-8 host, which protect both the host and the guests from deteriorations by surrounding ions/water molecules. Remarkably, the obtained Ln complex encapsulated ZIF-8 particles (Ln = terbium, europium) particles possessed high quantum yields (23.2% and 8.5%), large absorption cross-section (∼10−12 cm2), and long luminescence lifetimes (1.9 and 3.0 ms) in PBS buffer. In addition, the system can realize single/multi-color encoding by altering the loading amounts and the weight ratios of complexes emitting at different wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.