Abstract

Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky - Korteweg-de Vries (KS-KdV) equation, which is linearly coupled to an extra linear dissipative equation. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance equation for the field momentum, predicts the existence of stable cnoidal waves (CnWs) in the same system. It is found that the mean value U of the wave field u in the main subsystem, but not the mean value of the extra field, affects the stability of the periodic waves. Three different areas can be distinguished inside the stability region in the parameter plane (L,U), where L is the wave's period. In these areas, stable are, respectively, CnWs with positive velocity, constant solutions, and CnWs with negative velocity. Multistability, i.e., the coexistence of several attractors, including the waves with several maxima per period, appears at large value of L. The analytical predictions are completely confirmed by direct simulations. Stable waves are also found numerically in the limit of vanishing dispersion, when the KS-KdV equation goes over into the KS one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.