Abstract

In this paper we will consider a predator–prey model with a non-constant death rate and distributed delay, described by a partial integro-differential system. The main goal of this work is to prove that the partial integro-differential system has periodic orbitally asymptotically stable solutions in the form of periodic traveling waves; i.e. N( x, t) = N( σt − μ · x), P( x, t) = P( σt − μ · x), where σ > 0 is the angular frequency and μ is the vector number of the plane wave, which propagates in the direction of the vector μ with speed c = σ/∥ μ∥; and N( x, t) and P( x, t) are the spatial population densities of the prey and the predator species, respectively. In order to achieve our goal we will use singular perturbation’s techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.