Abstract

Formation of stable and hydrophobic self-assembled monolayers (SAMs) on an oxidized copper (Cu) surface has been accomplished via reaction with 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS). The perfluoroalkyl SAMs showed sessile drop static contact angles of more than 125° for pure water and stability against exposure to boiling water, boiling nitric acid solution, and warm sodium hydroxide solution for up to 30 min. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared reflection/absorption spectroscopy (FT-IRRAS) data reveal a coordination of the PFMS silicon (Si) atom with a cuprate (CuO) molecule present on the oxidized copper substrate. The data give good evidence that the stability of the SAM film on the PFMS-modified oxidized Cu surface is largely due to the formation of a siloxy−copper (−Si−O−Cu−) bond via a condensation reaction between silanol (−Si−OH) and copper hydroxide (−CuOH). The extremely hydrophobic and stable SAMs on oxidized Cu could have useful applications in corrosion inhibition for micro/nanoelectronics and/or heat exchange surfaces exploiting dropwise condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.