Abstract

A substantial interest in aerial robots has grown in recent years. However, the energetic cost of flying is one of the key challenges nowadays. Rotorcrafts are heavier-than-air flying machines that use lift generated by one or several rotors (vertically oriented propellers), and because of this, they spend a large proportion of their available energy to maintain their own weight in the air. In this brief, this concept is used to evaluate the relationship between navigation speed and energy consumption in a miniature quadrotor helicopter, which travels over a desired path. A novel path-following controller is proposed in which the speed of the rotorcraft is a dynamic profile that varies with the geometric requirements of the desired path. The stability of the control law is proved using the Lyapunov theory. The experimental results using a real quadrotor show the good performance of the proposed controller, and the percentages of involved energy are quantified using a model of a lithium polymer battery that was previously identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.