Abstract

We prove a formula which relates Euler characteristic of moduli spaces of stable pairs on local $K3$ surfaces to counting invariants of semistable sheaves on them. Our formula generalizes Kawai- Yoshioka’s formula for stable pairs with irreducible curve classes to arbitrary curve classes. We also propose a conjectural multiple cover formula of sheaf counting invariants which, combined with our main result, leads to an Euler characteristic version of Katz- Klemm-Vafa conjecture for stable pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.