Abstract

The use of organic field-effect transistors (OFETs) as sensors in aqueous media has gained increased attention for environmental monitoring and medical diagnostics. However, stable operation of OFETs in aqueous media is particularly challenging because of electrolytic hydrolysis of water, high ionic conduction through the analyte, and irreversible damage of organic semiconductors when exposed to water. To date, OFET sensors have shown the capability of label-free sensing of various chemical/biological species, but they could only be used once because their operational stability and lifetime while operating in aqueous environments has been poor, and their response times typically slow. Here, we report on OFETs with unprecedented water stability. These OFETs are suitable for the implementation of reusable chemical/biological sensors because they primarily respond to charged species diluted in an aqueous media by rapidly shifting their threshold voltage. These OFET sensors present stable current baselines and saturated signals which are ideal for detection of low concentration of small or large molecules that alter the pH of an aqueous environment. The overall response of these OFET sensors paves the way for the development of continuous chemical/biological nondestructive sensor applications in aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.