Abstract

The first isoindigo (bi)radicals were obtained by proton coupled oxidation of their 4-hydroxyaryl substituted precursors. Optical and magnetic spectroscopic studies revealed a singlet open-shell biradicaloid electronic ground state for the bisphenoxyl-isoindigo (<s2 >=1.20) with a small singlet-triplet energy gap of 0.065 eV and a large biradical character of y=0.79 that was corroborated by temperature-dependent EPR spectroscopy and quantum chemical calculations. The concept of kinetic blocking of the radical centers and delocalization of spin density into the electron-withdrawing chromophore core of isoindigo offers an entry into a new class of exceptionally stable open-shell functional materials based on organic colorants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call