Abstract

We develop a stable and efficient numerical scheme for modeling the optical field evolution in a nonlinear dispersive cavity with counter propagating waves and complex, semiconductor physics gain dynamics that are expensive to evaluate. Our stability analysis is characterized by a von-Neumann analysis which shows that many standard numerical schemes are unstable due to competing physical effects in the propagation equations. We show that the combination of a predictor-corrector scheme with an operator-splitting not only results in a stable scheme, but provides a highly efficient, single-stage evaluation of the gain dynamics. Given that the gain dynamics is the rate-limiting step of the algorithm, our method circumvents the numerical instability induced by the other cavity physics when evaluating the gain in an efficient manner. We demonstrate the stability and efficiency of the algorithm on a diode laser model which includes three waveguides and semiconductor gain dynamics. The laser is able to produce a repeating temporal waveform and stable optical comblines, thus demonstrating that frequency combs generation may be possible in chip scale, diode lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.