Abstract

In this paper, we propose a stable neurovisual servoing algorithm for set-point control of planar robot manipulators in a fixed-camera configuration an show that all the closed-loop signals are uniformly ultimately bounded (UUB) and converge exponentially to a small compact set. We assume that the gravity term and Jacobian matrix are unknown. Radial basis function neural networks (RBFNNs) with online real-time learning are proposed for compensating both gravitational forces and errors in the robot Jacobian matrix. The learning rule for updating the neural network weights, similar to a back propagation algorithm, is obtained from a Lyapunov stability analysis. Experimental results on a two degrees of freedom manipulator are presented to evaluate the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.