Abstract
ABSTRACT As nanomaterials find applications in an increasingly diverse range of fields such as wastewater treatment, biotechnology and flexible electronics, the demand for nanomaterials with specific properties has increased. This increase is coupled with an increasing emphasis on nanomaterials with highly specific properties for specialised applications. Industrially, nanomaterials are produced via wet-chemical techniques which employ the use of solvents and reagents which are environmentally harmful. As we move forward with the use of nanomaterials, the ability to produce nanomaterials in a sustainable manner has become a topic of great significance. Towards this end, Laser Ablation Synthesis in Solution (LASiS) is a physical production technique capable of producing tailored nanomaterial colloids in a sustainable manner. These colloids are produced by ablating a solid target immersed in a solvent using a laser. Typically, LASiS is conducted in a batch process and in small volumes limiting commercial viability. To overcome this, there has been a move towards the use of continuous production via LASiS using flow systems. This allows an increase in nanomaterial yield, resulting in colloid concentrations approaching those of commercial colloids. This work investigates a new production technique incorporating a laminar recirculatory flow system to produce stable high concentration nano-silver colloids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.