Abstract
Eroders are monotonic cellular automata with a linearly ordered state set that eventually wipe out any finite island of nonzero states. One-dimensional eroders were studied by Gal’perin in the 1970s, who presented a simple combinatorial characterization of the class. The multi-dimensional case has been studied by Toom and others, but no such characterization has been found. We prove a similar characterization for those one-dimensional monotonic cellular automata that are eroders even in the presence of random noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.