Abstract

Variational inequalities associated with monotone operators (possibly nonlinear and multivalued) and convex sets (possibly unbounded) are studied in reflexive Banach spaces. A variety of results are given which relate to a stability concept involving a natural parameter. These include characterizations useful as criteria for stable existence of solutions and also several characterizations of surjectivity. The monotone complementarity problem is covered as a special case, and the results are sharpened for linear monotone complementarity and for generalized linear programming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.