Abstract

A subcell model for thin wires in the finite-difference time-domain (FDTD) method using modified telegraphers equations has been developed by Holland et al. Edelvik has previously presented an extension of their algorithm, which allows for arbitrarily located and oriented wires with respect to the Cartesian grid. This is important to be able to accurately model wires that cannot be aligned to the Cartesian grid, e.g., tilted wires and circular loop wires. Recently, a dual set of equations has been proposed for modeling of thin slots. In this paper, we show that using a similar algorithm as for thin wires we can also handle slots of arbitrary location in Cartesian planes. Previous thin slot models have been susceptible for instabilities. We show that a symmetric coupling between field and slot yields a stable time-continuous field-slot system and that the fully discrete field-slot system is stable under a generalized Courant-Friedrich-Lewy (CFL) condition. The proposed method is demonstrated for scattering from a finite-length slot in an infinite conducting wall and a shielding enclosure including a slot. The results are in good agreement with published experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.